Есть 2000 различных натуральных чисел. Среднее арифметическое любых десяти из них —...

0 голосов
20 просмотров

Есть 2000 различных натуральных чисел. Среднее арифметическое любых десяти из них — целое. Какое наименьшее значение может принимать наибольшее из этих чисел?


Математика (14 баллов) | 20 просмотров
Дан 1 ответ
0 голосов

Если a, b, a₁,...,a₆ произвольные 8 чисел из этих 200, то
а+а₁+...+а₆=7n и b+а₁+...+а₆=7k при некоторых натуральных n,k.Тогда а-b=7(n-k), т.е. разность между двумя любыми а и b делится на 7. Т.е. наименьший возможный вариант максимального элемента будет, когда последовательность начинается с 1 и разность между соседними равна 7, т.е эти 200 чисел: 1, 8, 15,..., 200*7-6. Итак, ответ: 1394. 

(1.1k баллов)
0

Странно, при чем здесь 7, когда по условию средние делятся на 10