log_2x+20log_{2x}2>8
ОДЗ: x>0
8\\log_2x+\frac{20}{log_22*x}>8\\log_2x+\frac{20}{log_22+log_2x}>8\\log_2x+\frac{20}{1+log_2x}>8\\log_2x=t\\t+\frac{20}{1+t}>8\\t+\frac{20}{1+t}-8>0\\\frac{t+t^2+20-8-8t}{1+t}>0\\\frac{t^2-7t+12}{1+t}>0\\\frac{(t-3)(t-4)}{t+1}>0" alt=" log_2x+20log_{2x}2>8\\log_2x+\frac{20}{log_22*x}>8\\log_2x+\frac{20}{log_22+log_2x}>8\\log_2x+\frac{20}{1+log_2x}>8\\log_2x=t\\t+\frac{20}{1+t}>8\\t+\frac{20}{1+t}-8>0\\\frac{t+t^2+20-8-8t}{1+t}>0\\\frac{t^2-7t+12}{1+t}>0\\\frac{(t-3)(t-4)}{t+1}>0" align="absmiddle" class="latex-formula">
Вложение.
4\\-14\\2^{-1}2^4\\\frac{1}{2}16\\x\in(\frac{1}{2};8)\cup(16;+\infty)" alt="-14\\-14\\2^{-1}2^4\\\frac{1}{2}16\\x\in(\frac{1}{2};8)\cup(16;+\infty)" align="absmiddle" class="latex-formula">