0\\f(x)=\frac{3x^2-12}{1-11x}\\D(f):1-11x\neq0\\.\ \ \ \ \ \ \ \ x\neq\frac{1}{11}\\f(x)=0\\\frac{3x^2-12}{1-11x}=0\\3x^2-12=0\\x^2=4\\x=2\ \ \ \ \ x=-2" alt="\frac{3x^2-12}{1-11x}>0\\f(x)=\frac{3x^2-12}{1-11x}\\D(f):1-11x\neq0\\.\ \ \ \ \ \ \ \ x\neq\frac{1}{11}\\f(x)=0\\\frac{3x^2-12}{1-11x}=0\\3x^2-12=0\\x^2=4\\x=2\ \ \ \ \ x=-2" align="absmiddle" class="latex-formula">
Наноси на координатную прямую 2;-2;1/11. Опредделяем знаки на интервалах.
![x\in (-\infty;-2)\cup(\frac{1}{11};2) x\in (-\infty;-2)\cup(\frac{1}{11};2)](https://tex.z-dn.net/?f=x%5Cin+%28-%5Cinfty%3B-2%29%5Ccup%28%5Cfrac%7B1%7D%7B11%7D%3B2%29)