При каких значениях параметра а область определения функции y=log2(ax2-4x+3a) совпадает с...

0 голосов
34 просмотров

При каких значениях параметра а область определения функции y=log2(ax2-4x+3a) совпадает с множеством всех действительных чисел?


Алгебра (12 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
y=log_2(ax^2-4x+3a)
Область определения данной функции - множество значений х, удовлетворяющих неравенству ax² - 4x + 3a > 0.
Выясним, при каких значениях а решением последнего неравенства будет (-∞; +∞).
1) При а = 0 y=log_2(-4x) определена при х<0 ⇒ Этот случай нас "не устраивает".<br>2) При а<0 и D≥0 парабола у = ax² - 4x + <span>3a и ось Ох имеют 1 или 2 общие точки ⇒ область определения исходной функции есть объединение промежутков, на которые делят эти общие точки все множество (-∞; +∞) ⇒ Этот случай нас "не устраивает".
3) 
При а<0 и D<0 парабола у = ax² - 4x + 3a и ось Ох не имеют общих точек, а все точки параболы лежат ниже оси Ох. Поэтому неравенство  ax² - 4x + 3a > 0 решений не имеет ⇒ Этот случай нас "не устраивает".
4) При а>0 и D<0 парабола у = ax² - 4x + 3a и ось Ох не имеют общих точек, а все точки параболы лежат выше оси Ох. Поэтому неравенство  ax² - 4x + 3a > 0 имеет решение - множество  (-∞; +∞) ⇒ Этот случай нас "устраивает".
5) При а>0 и D≥0 парабола у = ax² - 4x + 3a и ось Ох имеют 1 или 2 общие точки ⇒ область определения исходной функции есть объединение промежутков, на которые делят эти общие точки все множество (-∞; +∞) ⇒ Этот случай нас "не устраивает".
Таким образом, нужное нам условие выполнится при а>0 и D<0.<br>Рассмотрим систему неравенств:
\begin{cases} a\ \textgreater \ 0 \\ 16-12a^2\ \textless \ 0 \end{cases} \Leftrightarrow \begin{cases} a\ \textgreater \ 0 \\ 3a^2-4\ \textgreater \ 0 \end{cases} \Leftrightarrow \begin{cases} a\ \textgreater \ 0 \\ (a- \frac{2\sqrt3}{3} )(a+\frac{2\sqrt3}{3})\ \textgreater \ 0 \end{cases} \\ \\\Leftrightarrow \begin{cases} a \in(0;+\infty) \\ a \in (-\infty;- \frac{2\sqrt3}{3} ) \cup (\frac{2\sqrt3}{3};+\infty) \end{cases} \Longrightarrow \boxed {a\in (\frac{2\sqrt3}{3};+\infty)}

Ответ: при 
a\in (\frac{2\sqrt3}{3};+\infty)
(25.2k баллов)