Числитель дроби увеличили ** некоторое число процентов, а знаменатель это же дроби...

0 голосов
39 просмотров

Числитель дроби увеличили на некоторое число процентов, а знаменатель это же дроби уменьшили на то же самое число процентов. Вся дробь при этом увеличилась на 200%. На сколько процентов увеличили числитель


Алгебра (77 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть числитель дроби  \frac{a}{b}  увеличили на х%, а знаменатель уменьшили на эти же х%. Тогда дробь будет иметь вид:

\frac{a+\frac{x}{100}\cdot a}{b-\frac{x}{100}\cdot b} = \frac{100a+ax}{100b-bx} = \frac{a(100+x)}{b(100-x)}

Вся дробь увеличилась на 200%, то есть стала равна

     \frac{a}{b} + \frac{200}{100} \cdot \frac{a}{b}= \frac{3a}{b}  

Cоставляем равенство:

\frac{3a}{b} = \frac{a(100+x)}{b(100-x)} \; \; \Rightarrow \; \; 3= \frac{100+x}{100-x} \; ;\; \; 3(100-x)=100+x\\\\300-3x=100+x\\\\4x=200\\\\x=50\; (\%)


(831k баллов)