** медиане BD треугольника АВС предназначена точку М так, что ВМ: MD = 3:2. прямая АМ...

0 голосов
97 просмотров

На медиане BD треугольника АВС предназначена точку М так, что ВМ: MD = 3:2. прямая АМ пересекает сторону ВС в точке Е. В каком отношении точка Е делит ВС, считая от вершины. Как?!!


Геометрия (15 баллов) | 97 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Есть такая теорема: Пропорциональные отрезки в произвольном треугольнике и ее надо тут применить
Получается что bm:md=be:ec •(1 +cd:ad)
bm:md=3:2(по условию),а cd:ad= 1:1 т.к. Bd - медиана. Подставляя получаем: 3:2=be:ec • (1 + 1)
А дальше уже посчитаете сами.
Обязательно посмотрите теорему!
У меня получилось 3:4

(48 баллов)