Sin(2x)^4+cos(2x)^4=sin(2x)^4 + cos(2x)^4 + 2 * sin(2x)^2 * cos(2x)^2 - 2 * sin(2x)^2 * cos(2x)^2 = (sin(2x)^2 + cos(2x)^2)^2 - 2 * sin(2x)^2 * cos(2x)^2 = 1 - 2 * sin(2x)^2 * cos(2x)^2
1 - 2 * sin(2x)^2 * cos(2x)^2 = 5/8
2 * sin(2x)^2 * cos(2x)^2 = 3/8
4 * sin(2x)^2 * cos(2x)^2 = 3/4
(2 * sin(2x) * cos(2x))^2 = 3/4
sin(4x)^2=3/4
Отсюда получаем совокупность уравнений:
sin(4x) = √3/2
sin(4x) = -√3/2
1) Из первого:
а) 4x = π/3+2πn => x=π/12+πn/2, n∈Z
0<=π/12+πn/2<=π<br>0<=1/12+n/2<=1<br>-1/12<=n/2<=11/12<br>-1/6<=n<=11/6<br>n={0, 1}
При n=0: x=π/12 рад = 180/12 ° = 15°
При n=1: x=π/12+π/2 рад = 15°+90°=105°
б) 4x = 2π/3+2πk => x=π/6+πk/2, k∈Z
0<=π/6+πk/2<=π<br>0<=1/6+k/2<=1<br>-1/6<=k/2<=5/6<br>-1/3<=k<=5/3<br>k={0,1}
При k=0: x=π/6 рад = 180/6 ° = 30°
При k=1: x=π/6+π/2 = 30°+90° = 120°
2) Из второго:
а) 4x = -π/3+2πn => x=-π/12+πn/2, n∈Z
0<=-π/12+πn/2<=π<br>0<=-1/12+n/2<=1<br>1/12<=n/2<=13/12<br>1/6<=n<=13/6<br>n={1,2}
При n=1: x=-π/12+π/2 рад = -15°+90°=75°
При n=2: x=-π/12+2π/2 рад = -15°+180°=165°
б) 4x = -2π/3+2πk => x=-π/6+πk/2, k∈Z
0<=-π/6+πk/2<=π<br>0<=-1/6+k/2<=1<br>1/6<=k/2<=7/6<br>1/3<=k<=7/3<br>k={1,2}
При k=1: x=-π/6+π/2 рад = -30°+90° = 60°
При k=2: x=-π/6+2π/2 рад = -30°+180° = 150°
Ответ: 60°,75°,150°,165°