1/cotg²x - 1/sin(π/2-x) =1, x≠k.π
tg²x - 1/cosx =1
sin²x/cos²x - 1/cosx =1 /.cos²x
sin²x - cosx = cos²x
1-cos²x - cosx = cos²x
2.cos²x + cosx - 1=0
cosx=z
2z²+z-1=0
z=1/2 ∨ z=-1
a)cosx=1/2
x=π/3+2k.π, k∈Z , x=5π/3+2k.π, k∈Z
b)cosx=-1
x=π+2k.π, k∈Z
/3π,9π/2/ : , x1=4π-π/3=11π/3, x2=4π+π/3=13π/3