∜(4-cos²(2x))>-2cosx
Если cosx>0:
4-cos²(2x)≥0
(2-cos2x)(2+cos2x)≥0
-2≤cos2x≤2 - вот это выполняется для любого x, значит ответ для этого случая:
Если cosx
≤0:
Можно возвести обе части в четвертую степень.
С учетом условия cosx≤0 получаем:
x∈[pi/2+2pi*n; 3pi/4+2pi*n)∪(5pi/4+2pi*n; 3pi/2+2pi*n]
Теперь объединяем это решение с тем что полученно в прошлом случае. Это очень легко сделать на круге.
Окончательный ответ:
n ∈ Z