Докажите рациональность числа √3+2√2 -√3-2√2

0 голосов
66 просмотров

Докажите рациональность числа √3+2√2 -√3-2√2


Математика (21 баллов) | 66 просмотров
Дан 1 ответ
0 голосов

.к. рациональное число - это число которое можно представить в виде дроби m/n, где m - целое, а n -натуральноет.о. частное двух рациональных чисел\frac{m1}{n1} / \frac{m2}{n2} = \frac{m1}{n1} * \frac{n2}{m2} = \frac{m1*n2}{n1*m1}  однако результатом умножения целого числа на натуральное является целое число, а не натальное, таким образом наше частное представляется в виде дроби из двух ЦЕЛЫХ чисел - это не удовлетворяет определению рационального числа.  Вывод: частное двух рациональных чисел НЕ есть число рациональное  пример первое число 1/2 - рациональное, второе число 0/5 - рациональное, частное 5/0 - не в коей мере рациональным не является

(132 баллов)