1. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Следовательно, отношение второго катета к гипотенузе равно 6/10 = 0,6. Квадрат этого отношения равен 0,36.
2. Катет данного треугольника, который делит биссектриса, равен 6 + 10 = 16 см. Записываем теорему Пифагора для данного треугольника:
Квадрат гипотенузы минус квадрат второго катета равен 256.
Таким образом, получаем:
x^2/(х^2 + 256) = 0,36, откуда х = 12.
3. Находим площадь данного треугольника как половину произведения катетов:
S = 12*16/2 = 96 кв. см.
Ответ: 96 кв. см.