x^2+Ax+(A-2)=0
x1 + x2 = -A
x1 * x2 = (A - 2)
x1^2 + x2^2 = (x1 + x2)^2 - 2*x1*x2
x1^2 + x2^2 = A^2 - 2*(A - 2) = A^2 -2*A + 4
A^2 -2*A + 4 = 0
D = sqrt(4 - 4*4) <0 - корней нет. <br>
Взяв пробную точку, получаем, что значение выражения всегда больше нуля. Т.о. мы имеем параболу с ветвями вверх, находящуюся в верхней полуплоскости, а, значит, минимальное ее значение будет в вершине.
A = 2/2 = 1 - x-вая координата вершины (-b/2a)
Итого, при A = 1 искомое значение будет минимальным.