Докажите,что сумма двух медиан треугольника больше полусуммы двух сторон,к которым эти...

0 голосов
34 просмотров

Докажите,что сумма двух медиан треугольника больше полусуммы двух сторон,к которым эти медианы проведены.


Геометрия (125 баллов) | 34 просмотров
Дан 1 ответ
0 голосов

Решение. Пусть AB=c (рис.4),
AC=b , BC=a и  CМ=m .
Пусть F – точка пересечения
прямой СМ и прямой,
проходящей через А
параллельно прямой ВС.
Ясно, что треуголник MAF=треугольнику MBC (по
стороне с\2 и двум
прилежащим углам)Получили, что MF=MC=m и AF=BC=a .По неравенству треугольника для треугольника AFC имеем: a+b больше чем 2m или m меньше чем ((a+b)/2)

 

(14 баллов)