Наидите точку максимума функции y=(x-1)^2*e^4-x

0 голосов
23 просмотров

Наидите точку максимума функции y=(x-1)^2*e^4-x


Математика (21 баллов) | 23 просмотров
Дан 1 ответ
0 голосов

Найдем производную : y'=2(x-1)·e^(4-x)+(x-1)^2·e^(4-x)·(-1)=
=e^(4-x)·(x-1)·(2-x+1)= e^(4-x)·(x-1)·(3-x)    
y'=0  ⇒ x-1=0  и   3-x=0    ⇒    x=1    и    x=3
y' >0  при x∈(1,3)                y'<0    при x∈(-∞,1)∪(3,+∞)<br>Тогда точкой  максимума будет  x=3,     у=4е