Решить неравенство Дробь 3/(6x^2-x-12) < дробь (25x-47)/(10x-15) минус дробь 3/(3x+4)

0 голосов
15 просмотров

Решить неравенство
Дробь 3/(6x^2-x-12) < дробь (25x-47)/(10x-15) минус дробь 3/(3x+4)


Математика (19 баллов) | 15 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

6x²-x-12=6(x+4/3)(x-3/2)=(3x+4)(2x-3)
D=1+288=289
x1=(1-17)/12=-4/3 U x2=(1+17)/12=3/2
------------------------
3/[(3x+4)(2x-3)]-(25x-47)/[5(2x-3)+3/(3x+4)<0<br>(15-75x²+141x-100x+188+30x-45)/[5(3x+4)(2x-3)<0<br>(-75x²+71x+158)/[5(3x+4)(2x-3)<0<br>(75x²-71x-158)/[5(3x+4)(2x-3)>0
75x²-71x-158=0
D=5041+47400=52441
√D=229
x1=(71-229)/100=-1,58
x2=(71+229)/100=3
3x+4=0⇒x=-4/3
2x-3=0⇒x=1,5
           +                 _                  +                _                  +
------------(-1,58)---------(-1 1/3)---------(1,5)----------(3)----------------
x∈(-∞;-1,58) U (-1 1/3;1,5) U (3;∞)

(750k баллов)
0

Спасибо большое

0

У меня вопрос, как это получилось, разве общий множитель не выносится за скобки? =(3x+4)(2x-3)