Найти наименьшее значение функции y=|x-1|+|x-2|+...+|x-n|, n-натуральное. Это алгебра 9 класс профиль, решать без производной
Надо проследить закономерности. при n=1 у=|x-1| - наименьшее значение равно 0 при х=1 при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4] Итак, при четных n: при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4] ... при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1] при нечетных n: при n=1 у=|x-1| - наименьшее значение равно 0 при х=1; при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 .... при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k О т в е т. при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1] при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k См. рисунки в приложении.