Задача по комбинаторике, чтобы расчитать количество комбинаций (важно, что в задачах данного типа один и тот же элемент не может повторяться), нужно подставить данное значение в простую формулу.
х=п!
где н количетсво элементов, а х - количество комбинаций.
Значит для вычисления количества вариантов составления поезда из 4х вагонов посчитаем факториал 4!=4*3*2*1=24.
Однако, у нас в задаче указан один нюанс - условие.
один конкретный вагон должен быть обязательно впереди другого конкретного, а это не сколько изменит решение и ответ.
в Данной задаче можно поступить перебором вариантов, так как их у нас по уже выполненным оценкам меньше 24, что может бы ть подсчитано перебором.
Итак.
1. Если представить, красный-и-синий вагоны уже правильно скреплены, и мы можем смотреть на них как единый красно-синий вагон, получится количество комбинаций с 3мя вагонами, то есть
3!=6. Все эти варинты нам подходят.
Также еще у ним нужно добавить варианты расположения при которых красный и синий вагоны не находятся в пямой связи, т.е. не стоят рядом.
К Ж С З
Ж К З С
К Ж З С
К З Ж С
К З С Ж
З К Ж С
Получили еще 6 вариантов.
Значит, всего будет 12 комбинаций.