Для удобства запишем сумму так:
S(n)=4!/0!+5!/1! +6!/2!...+(n+3)!/(n-1)!=
=1/5 *(n+4)!/(n-1)!
1)Покажем справедливость для n=1 :
4!/0!=1/5 *5!*/0! (Верно)
2) Положим ее верность для n=k,то есть: S(k)=1/5*(k+4)!/(k-1)!
3) На основании предполодения 2) доказываем ее верность для n=k+1 : S(k+1)=S(k)+a(k+1)
S(k+1)=S(k)+(k+4)!/k!
S(k+1)=1/5 *(k+4)!/(k-1)! +(k+4)!/k!=
(1/5*(k+4)!*k +(k+4)!)/k!= (1/5k+1)*(k+4)!/k!= 1/5 *(k+5)*(k+4)!/k!=
= 1/5* (k+5)!/k!=S(k+1)
Что и требовалось доказать.