1 Область определения функции х∈(-∞;+∞)
2 f(-x)=4(-x)/(1+(-x)²)=-4x/(1+x²) функция нечетная, график симметричен относительно начала координат
3 f'(x)=(4+4x²- 4x*2x)/(1+x²)²=(-4x²+4)/(1+x²)²
f'(x)=0
-4x²+4=0
x²=1
x1-2=+-1
при х∈(-∞;-1) f'(x)<0 , f(x) убывает <br>при х∈(-1;+1) f'(x)>0 f(x) возрастает
при х∈(-1;+∞) f'(x)<0 f(x) убывает<br>в точке х=-1 f'(x) меняет знак с - на + ⇒ в точке х=-1 минимум f(-1)=-4/2=-3
в точке х=1 f'(x) меняет знак с + на - ⇒ в точке х=1 максимум
f(1)=4/2=2
4 при х=0 f(x)=0
5 lim f(x)=0 х=0 - горизонтальная ассимптота
x->+-∞