Сочетанием из «n» по «k» называется набор «k» элементов, выбранных из данного множества, содержащего «n» различных элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми. С = n! : (k! • (n – k)!), где факториал n! — произведение всех натуральных чисел от 1 до n включительно: n! = 1 • 2 • 3 • … • n. Найдем число сочетаний из 59 по 14: С = 59! : (14! • (59 – 14)!) = 59! : (14! • (45)!) = 1 • 2 • 3 • … • 59 : (1 • 2 • 3 • … • 14 •1 • 2 • 3 • … • 45) = 13298522298180. Ответ: 13298522298180.