Признаки и свойства трапеции

0 голосов
30 просмотров

Признаки и свойства трапеции


Геометрия (19 баллов) | 30 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Свойства и признаки равнобедренной трапеции - Трапеция является равнобедренной тогда и только тогда, когда углы при ее основании равны (диагонали равны)

Трапеция
Определение: Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны.

Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.

Определение: Трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны.

Определение: Трапеция, один из углов которой прямой, называется прямоугольной.

Свойства трапеции:
ее средняя линия параллельна основаниям и равна их полусумме;
если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
Признаки трапеции:
Четырёхугольник является трапецией, если его параллельные стороны не равны
Формулы площади:
a и b — основания; h — расстояние между ними; l — средняя линия.

(56 баллов)
0 голосов

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.

Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция,  у которой есть  прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

 Свойства трапеции: 

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники  и , образованные отрезками диагоналей и основаниями трапеции, подобны.

4. Треугольники  и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции:

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.




(157 баллов)