Меньшая основная и боковая сторона равнобедренной трапеции соответственно равны 24 и...

0 голосов
30 просмотров

Меньшая основная и боковая сторона равнобедренной трапеции соответственно равны 24 и 12см. Найдите площадь трапеции, если её острый угол 60градусов


Геометрия (80 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Т.к. угол при основании равен 60°, то проводя высоту и получая прямоугольный треугольник, второй угол равен 30°. Тогда часть большего основания, лежащего напротив этого угла, равна 12/2 = 6, т.е. её половине. Аналогично и с другой стороной трапеции (т.к. она равнобедренная, то будет то же самое).
Теперь по теореме Пифагора найдём высоту:
h = √(12²-6²) = √(144-36) = √108 = 6√3. Теперь найдём всю длину большего основания:
Две части мы нашли (они равны по 6 см), а третья часть равна меньшему основанию, т.к. высоты образуют прямоугольник, а в прямоугольнике противоположные стороны равны. Тогда большее основание равно 6 + 6 + 24 = 36.
Теперь находим площадь по формуле S = 1/2(a+b)•h
S = 1/2(24+36)•6√3 = 30•6√3 = 180√3.

(145k баллов)