1) |x^2+2x| = 0
x^2+2x = 0
x1=0; x2=-2
2) |x^2+1| + |x^2-1| = 1
x^2+1 > 0 при любом х, поэтому модуль можно просто убрать.
a) x € (-1; 1); |x^2-1| = 1-x^2
x^2+1+1-x^2 = 1
2 = 1; решений нет.
b) x € (-oo;-1]U[1;+oo), |x^2-1|=x^2-1
x^2+1+x^2-1 = 1
2x^2 - 1 = 0
x1 = -1/√2; x2 = 1/√2.
Но оба эти корня не попадают в интервал.
x1, x2 € (-1; 1). Поэтому
Ответ: решений нет