Комплексное уравнения Прошу помощи достаточно понимающего человека по математике. z1 =...

0 голосов
87 просмотров

Комплексное уравнения

Прошу помощи достаточно понимающего человека по математике.

z1 = 3-i; z2 = 1 - √3i (z1 - z2; z1 * z2; z1 : z2)


Алгебра (737 баллов) | 87 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

z_1-z_2=3-i-(1-\sqrt{3}i)=2+(\sqrt{3}-1)i

z_1*z_2=(3-i)*(1-\sqrt{3}i)=3-3 \sqrt{3}i-i+ \sqrt{3}i^2=

=3-(1+ 3\sqrt{3})i+\sqrt{3}(-1)=3-\sqrt{3}-(1+3 \sqrt{3} )i

\frac{z_1}{z_2}= \frac{3-i}{1- \sqrt{3}i}* \frac{1+ \sqrt{3}i }{1+ \sqrt{3}i }=\frac{(3-i)(1+ \sqrt{3} i)}{(1- \sqrt{3}i)(1+ \sqrt{3}i)}=\frac{3- \sqrt{3}+(3 \sqrt{3}-1)i}{(1- \sqrt{3}i)(1+ \sqrt{3}i)}=

=\frac{3- \sqrt{3}+(3 \sqrt{3}-1)i}{1^2-(\sqrt{3})^2i^2} =\frac{3- \sqrt{3}+(3 \sqrt{3}-1)i}{1+3}= \frac{3- \sqrt{3} }{4} + \frac{3 \sqrt{3}-1}{4}i
(30.4k баллов)
0

Уф, огромное Вам спасибо, вы не представляете, как выручили меня! В лучшее

0

пожалуйста)