Дано: А(-6;1), В(0;5), С(6;-4), D(0;-8). Докажите, что АВСD – параллелограмм, найдите его...

0 голосов
126 просмотров

Дано: А(-6;1), В(0;5), С(6;-4), D(0;-8). Докажите, что АВСD – параллелограмм, найдите его периметр.


Геометрия (254 баллов) | 126 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Найдем стороны четырехугольника.
Вектор АВ{Xb-Xa;Yb-Ya} или АВ{6;4}. 
Его модуль (длина): |AB|=√(X²+Y²)=√(36+16)=√52.
Вектор ВС{6;-9}, его модуль |BC|=√(36+81)=√117.
Вектор CD{-6;-4}, его модуль |CD|=√(36+16)=√52.
Вектор AD{6;-9}, его модуль  |AD|=√(36+81}=√117.
Мы видим, что противоположные стороны четырехугольника попарно равны, следовательно, четырехугольник АВСD - параллелограмм с периметром Р=2(√52+√117).

(117k баллов)