Решить в целых положительных числах уравнение x^2 - y^2 = 105
(x-y)(x+y)=105
105=3*5*7
Т.к. в задании надо найти положительные числа, то разность будет меньше суммы этих чисел
1) 2)
3) 4)
(x + y)(x - y) = 105 = 3 * 5 * 7. 105 и x + y ≥ x - y): x + y = 105, x - y = 1 ==> (x, y) = (53, 52) x + y = 35, x - y = 3 ==> (x, y) = (19, 16) x + y = 21, x - y = 5 ==> (x, y) = (13, 8) x + y = 15, x - y = 7 ==> (x, y) = (11, 4).