Первый член геометрической прогрессии равен 5, второй член прогрессии в восемь раз меньше...

0 голосов
64 просмотров

Первый член геометрической прогрессии равен 5, второй член прогрессии в восемь раз меньше ее пятого члена. Найти сумму первых пяти членов прогрессии.


Алгебра (16 баллов) | 64 просмотров
Дан 1 ответ
0 голосов

\begin{cases} b_{1}=5\\b_{2}=\frac{b_{5}}{8}\\S_{5}=\frac{b_{1}(q^{5}-1)}{q-1} \end{cases} \\ \begin{cases} b_{1}=5\\8b_{1}q=b_{1}q^{4}\\S_{5}=\frac{b_{1}(q^{5}-1)}{q-1} \end{cases} \\ \begin{cases} b_{1}=5\\q^{3}=8\\S_{5}=\frac{b_{1}(q^{5}-1)}{q-1} \end{cases} \\ \begin{cases} b_{1}=5\\q=2\\S_{5}=\frac{5(2^{5}-1)}{2-1}={5(32-1)=155 \end{cases}
Ответ: 155

(2.5k баллов)