Докажите что средняя линия трапеции делит каждую ее диагональ пополам

0 голосов
159 просмотров

Докажите что средняя линия трапеции делит каждую ее диагональ пополам


Геометрия (12 баллов) | 159 просмотров
Дан 1 ответ
0 голосов

дана трапеция ABCD

EM - средняя линия

пересекает диагонали в точках К и N

AC и BD - диагонали

 

из свойств средней линии трапеции: EM||BC||AD

CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.

AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.

Следовательно: AK=CK и DN=BN

 

можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.

(531 баллов)