1) найти целые решения системы : x+y=2 и xy+z^2=1 ( оба уравнения в одной системе)...

0 голосов
26 просмотров

1) найти целые решения системы :
x+y=2 и xy+z^2=1 ( оба уравнения в одной системе)
2)Доказать, что если a,b,c - положительные числа и abc=1, то a+b+c ⩾3
все решить подробно и понятно, баллы таки не маленькие с:


Алгебра (24 баллов) | 26 просмотров
0

неравенством Коши пользоваться можно вам?

0

Не проходили такое

Дан 1 ответ
0 голосов
Правильный ответ

Решим уравнение xy+z^2=1 относительно z:

z=\pm \sqrt{1-xy},xy \leq 1

для решения в целых числах необходимо, что бы подкоренное выражение было полным квадратом:

\left \{ {{1-xy=k^2,k\in Z} \atop {xy \leq 1}} \right.

используем условие, что x+y=2;y=2-x

\left \{ {{1-x(2-x)=k^2,k\in Z} \atop {x(2-x) \leq 1}} \right.;
\left \{ {{1-2x+x^2=k^2,k\in Z} \atop {2x-x^2 \leq 1}} \right.;
\left \{ {{(x-1)^2=k^2,k\in Z} \atop {0 \leq 1-2x+x^2}} \right.;

\left \{ {{(x-1)^2-k^2=0,k\in Z} \atop {0 \leq (x-1)^2}} \right.;

второе условие системы выполняется всегда

получили: (x-1-k)(x-1+k)=0,k\in Z

x=1+k,or,x=1-k,k\in Z

\left \{ {{x=1+k} \atop {y=2-(1+k)}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=2-(1-k)}} \atop {z=\pm k } \right.

\left \{ {{x=1+k} \atop {y=1-k}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=1+k)}} \atop {z=\pm k } \right.

Ответ: (1+k;1-k;k); (1+k;1-k;-k); (1-k;1+k;k); (1-k;1+k;-k); где k\in Z

Докажем, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

Пусть a=x^3b=y^3c=z^3

тогда наше неравенство равносильно неравенству (его нам тепер нужно доказывать):
x^3+y^3+z^3 \geq 3xyz

x^3+y^3+z^3-3xyz \geq 0

предлагаю разложить на множители уже самому
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

x+y+z\ \textgreater \ 0 по условию

докажем, что x^2+y^2+z^2 \geq xy+xz+yz

для это рассмотрим верное неравенство:
(x-y)^2+(x-z)^2+(y-z)^2 \geq 0

x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2 \geq 0

2x^2+2y^2+2z^2-2xy-2xz-2yz \geq 0

x^2+y^2+z^2-xy-xz-yz \geq 0

x^2+y^2+z^2 \geq xy+xz+yz

мы доказали, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

тогда a+b+c \geq 3\sqrt[3]{abc}=3* \sqrt[3]{1}=3

неравенство доказано

(30.4k баллов)
0

Спасибо большое с:

0

можно попробовать подумать, как записать ответ в 1-м более компактно

0

пожалуйста

0

Да я и так сижу, думаю)