Все просто.
есть такая форула для cos двойного угла
cos(2a)= (cos(a))^2 - (sin(a))^2
поэтому используя ее получим
sin^2(x) - cos^2(x) = -( cos^2(x) -sin^2(x)) =-(cos(2x))= -cos(2x)
есть такая форула для sin двойного угла
sin(2a)= 2*cos(a)*sin(a)
тогда используя ее получим
4sinx * cosx = 2*(2*cos(x)*sin(x)) = 2*sin(2x)
азначит наше выражение примет вид
4sinx * cosx * (sin^2(x) - cos^2(x)) = 2*sin(2x) * (-cos(2x)) = -(2*sin(2x)*cos(2x))=
тогда используя форулу для sin двойного угла получим
= -(sin(2*(2x)) = -sin4x