Найти сумму четырех первых членов геометрической прогрессии, такой что её первые три...

0 голосов
39 просмотров

Найти сумму четырех первых членов геометрической прогрессии, такой что её первые три члена , сумма которых равна 148/9 являются одновременно первым, четвёртым и восьмым членами арифметической прогрессии


Алгебра (707 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

По условию задачи
b₁=a₁
b₂=a₄
b₃=a₈
и
b₁+b₂+b₃=148/9

Основное характеристическое свойство геометрической прогрессии
b₂²=b¹·b³
По формуле общего члена арифметической прогрессии
а₄=а₁+3d
a₈=a₁+7d

Подставляем вместо b₁; b₂; b₃  
а₁; a₄; a₈, выраженные через a₁   и  d.

Получаем систему двух уравнений с двумя неизвестными a₁ и d.

{a₁+a₁+3d+a₁+7d=148/9
{(a₁+3d)²=a₁·(a₁+7d)

{3a₁+10d=148/9
{a₁=9d

3·9d+10d=148/9
37d=148/9
d=4/9
a₁=4

b₁=a₁=4
b₂=a₄=a₁+3d=4+3·(4/9)=4+(4/3)=16/3
q=b₂/b₁=(16/3):4=4/3
b₄=b₁·q³=4·(4/3)³=64/27
S₄=S₃+b₄=(148/9)+(64/27)=(148·3+64)/27=508/27

О т в е т. 508/27



(413k баллов)