** диагонали MP прямоугольника MNPQ отложены равные отрезки MA и PB. Докажите что ANBQ...

0 голосов
3.7k просмотров

На диагонали MP прямоугольника MNPQ отложены равные отрезки MA и PB. Докажите что ANBQ параллелограмм


Геометрия (12 баллов) | 3.7k просмотров
Дан 1 ответ
0 голосов

Дано: MNPQ - прямоугольник
MP - диагональ
МА = РВ
Доказать: ANBQ - параллелограмм.

Доказательство:
1.Рассмотрим треугольники PBN и MAQ.
Они равны по двум сторонам и углу между ними: 
PN=MQ как противоположные стороны прямоугольника 
ВР=АМ по условию
уголNPM=уголQMP (как накрест лежащие углы при пересечении двух параллельных прямых PN и MQ секущей МР.)
 Из равенства треугольников следует, что их стороны AQ=BN
2.Рассмотрим треугольники PBQ и MAN. Они  равны по двум сторонам и углу между ними:
PQ=MN как противоположные стороны прямоугольника
ВР=АМ по условию
Из равенства треугольников следует, что их стороны BQ=AN
Используя признак параллелограмма о том, что, если в четырехугольнике противоположные стороны попарно равны (AQ=BN и BQ=AN), то этот четырехугольник - параллелограмм, делаем вывод, что ANBQ - параллелограмм, что и требовалось доказать!


image
(539 баллов)