Билет 6.
1.Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
У параллелограмма противолежащие стороны равны.
У параллелограмма противолежащие углы равны.
2. Доказываем через треугольники, образованные диагоналями, у которых основания - боковые стороны трапеции. Так как диагонали равны, то и боковые стороны треугольников между собой равны, а углы при вершине у центра трапеции вертикальные, следовательно по признаку равенства треугольников (две стороны и угол между ними) они равны, а значит основания у них равны, из чего следует, что трапеция равнобедренная.
3.1) Построим диагональ АС. Строим треугольник АВС по трем сторонам АВ, ВС, АС, где АВ = ВС — данные стороны ромба, а АС — диагональ ромба. Через точку А проводим прямую, параллельную ВС, а через точку С прямую, параллельную АВ. Точку пересечения данных прямых обозначим D ABCD - искомый ромб.