у = e(xln^x-2xlnx+x)
y' = e(xln^2x-2xlnx+x)*(ln^2x+xlnx*(1/x)-2lnx-2x/x+1) = (ln^2x -lnx-1)e(xln^2x-2xlnx+х)
y'' = ((2/x)lnx -1/x)e(xln^2x-2xlnx+x) +(ln^2x-lnx-1)^2*e(xln^2x-2xlnx+x) =
= e(xln^2x-2xlnx+x)((2/x)lnx-1/x+(ln^2x-lnx-1)^2)
y''(e) = e(eln^2(e)-2eln(e)+e)((2/e)ln(e)-1/e+(ln^2(e)-ln(e)-1)^2) =
= e(e -2e+e)((2/e)-1/e+(1-1-1)^2 = e(0)(1/e+1) = 1+1/e