Помагите пожалуйста!! Напишите формулы сокращеного умнажения?

0 голосов
39 просмотров

Помагите пожалуйста!! Напишите формулы сокращеного умнажения?


Алгебра (16 баллов) | 39 просмотров
Дано ответов: 2
0 голосов

Формулы для квадратов{\displaystyle (a\pm b)^{2}=a^{2}\pm 2ab+b^{2}}{\displaystyle a^{2}-b^{2}=(a+b)(a-b)}{\displaystyle \left(a+b+c\right)^{2}=a^{2}+b^{2}+c^{2}+2ab+2ac+2bc}Формулы для кубов{\displaystyle (a\pm b)^{3}=a^{3}\pm 3a^{2}b+3ab^{2}\pm b^{3}}{\displaystyle a^{3}\pm b^{3}=(a\pm b)(a^{2}\mp ab+b^{2})}{\displaystyle \left(a+b+c\right)^{3}=a^{3}+b^{3}+c^{3}+3a^{2}b+3a^{2}c+3ab^{2}+3ac^{2}+3b^{2}c+3bc^{2}+6abc}Формулы для четвёртой степени{\displaystyle (a\pm b)^{4}=a^{4}\pm 4a^{3}b+6a^{2}b^{2}\pm 4ab^{3}+b^{4}}{\displaystyle a^{4}-b^{4}=(a-b)(a+b)(a^{2}+b^{2})} (выводится из {\displaystyle a^{2}-b^{2}})Формулы для n-ой степени{\displaystyle a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+...+a^{2}b^{n-3}+ab^{n-2}+b^{n-1})}{\displaystyle a^{2n}-b^{2n}=(a+b)(a^{2n-1}-a^{2n-2}b+a^{2n-3}b^{2}-...-a^{2}b^{2n-3}+ab^{2n-2}-b^{2n-1})}, где {\displaystyle n\in N}{\displaystyle a^{2n}-b^{2n}=(a^{n}+b^{n})(a^{n}-b^{n})}{\displaystyle a^{2n+1}+b^{2n+1}=(a+b)(a^{2n}-a^{2n-1}b+a^{2n-2}b^{2}-...+a^{2}b^{2n-2}-ab^{2n-1}+b^{2n})}, где {\displaystyle n\in N}Некоторые свойства формул{\displaystyle (a-b)^{2n}=(b-a)^{2n}}, где {\displaystyle n\in N}{\displaystyle (a-b)^{2n+1}=-(b-a)^{2n+1}}, где {\displaystyle n\in N}

(64 баллов)
0 голосов

(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 (a+b)^3=a^3+(3a^2)b+3ab^3+b^3 (a-b)^3=a^3-(3a^2)b+3ab^3-b^3 a^2-b^2=(a-b)(a+b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2)

(46 баллов)