Какое наибольшее значение может принимать наибольший общий делитель 13 натуральных чисел,...

0 голосов
34 просмотров

Какое наибольшее значение может принимать наибольший общий делитель 13 натуральных чисел, если их сумма равна 1988?


Математика (15 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть наибольшее возможное значение наибольшего общего делителя равно d. Тогда каждое из 13 чисел делится на d, значит, и их сумма, 1988, делится на d. Кроме того, должно выполняться неравенство 1988/d≥13 (каждое из 13 чисел не меньше d). 

Разложим на множители число 1988: 1988=2²*7*71. Для того, чтобы число d было наибольшим, число 1988/d должно быть наименьшим возможным, но не меньше 13. Поскольку 1988 не делится на 13, наимеьшим возможным значением дроби является число 2*7=14. А значит, наибольшим возможным значением делителя d является число 1988/14=142. Оно достигается, если одно из чисел равно 2*142=284, а 12 других равны 142.

Ответ: 142.

(47.5k баллов)