0 \\\ 16*11^{x}-121*2^{2x}>0 \\\ \frac{16*11^{x}-121*2^{2x}}{121*2^{2x}}>0 \\\ \frac{16*11^{x}}{121*2^{2x}}-1>0 \\\ \frac{4^2*11^{x}}{11^2*4^{x}}>1 \\\ \frac{11^{x-2}}{4^{x-2}}>1 \\\ (\frac{11}{4})^{x-2}>(\frac{11}{4})^0 \\\ x-2>0 \\\ x>2" alt="2^{2x}-15*11^{x}<11^{x}-15*2^{2x+3} \\\ 11^{x}-120*2^{2x}-2^{2x}+15*11^{x} >0 \\\ 16*11^{x}-121*2^{2x}>0 \\\ \frac{16*11^{x}-121*2^{2x}}{121*2^{2x}}>0 \\\ \frac{16*11^{x}}{121*2^{2x}}-1>0 \\\ \frac{4^2*11^{x}}{11^2*4^{x}}>1 \\\ \frac{11^{x-2}}{4^{x-2}}>1 \\\ (\frac{11}{4})^{x-2}>(\frac{11}{4})^0 \\\ x-2>0 \\\ x>2" align="absmiddle" class="latex-formula">
Наименьшее целое число, удовлетворяющее неравенству - это число 3.
Ответ: 3.