3^(2x+4) + 45*6^x - 9*2^(2x + 2) = 0
3^4* 3^2x + 45*2^x*3^x - 9*2^2*2^2x = 0
Разделим обе части уравнения на -9*3^2x/
4*(2/3)^2x - 5*(2/3)^x - 9 = 0
Заменим (2/3)^x = z, (2/3)^2x = z^2
4z^2 - 5z - 9 = 0
D = b^2 - 4ac = (-5)^2 - 4*4*(-9) = 25 + 144 = 169 > 0
z_1 = (-b + VD)/2a = (5 + V169)/2*4 = (5 + 13) /8 = 2 1/4 = 9/4
z_2 = (-b - VD)/2a = (5 - 13)/8 = -1
1) (2/3)^x = 9/4 ----> (2/3)^x = (2/3)^(-2) -----> x = -2
2) (2/3)^x = -1 нет решений.
Ответ. -2.