Спроецируем прямую АВ на плоскость ХОZ и получим прямую А1В1.
Это будет след заданной плоскости, параллельной оси ОУ.
Тангенс угла наклона к оси ОХ равен (3-(-1))/(-3-2) = -4/5.
Находим отрезки на осях координат, отсекаемые искомой плоскостью.
Возьмём точку В1 на прямой А1В1. Она пересекает ОХ на расстоянии 3/(-4/5) = -15/4 = -3,75 от проекции точки В1 на ось ОХ.
-3-(-3,75) =0,75 = 3/4.
На оси OZ точка пересечения равна 0-(0,75*(-4/5) = 0,6 = 3/5.