Помогите, пожалуйста, решить неравенство.|x^2+x|<=36/(x^2+x)

0 голосов
24 просмотров

Помогите, пожалуйста, решить неравенство.
|x^2+x|<=36/(x^2+x)<br>


Алгебра (240 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

X²+x=a
|a|-36/a≤0
1)a<0<br>-a-36/a≤0
a+36/a≥0
(a²+36)/a≥0
a²+36>0 при любом а⇒a>0
x²+x>0
x(x+1)>0
x=0  x=-1
x∈(-∞;-1) U (0;∞)
2)a>0
a-36/a≤0
(a²-36)/a≤0
(a-6)(a+6)/a≤0
a=6  a=-6  a=0
           _                  +                      _                  +
---------------[-6]---------------(0)---------------[6]------------------
a≤-6⇒x²+x≤-6
x²+x+6≤0
D=1-24=-23 нет решения
0{x²+x>0⇒x(x+1)>0⇒x<-1 U x>0
{x²+x≤6⇒x²+x-6≤0⇒(x+3)(x-2)≤0⇒-3≤x≤2
x∈[-3;-1) U (0;2]
Ответ x∈(-∞;-1) U (0;2]

(750k баллов)
0

Почему при а<0 сначала -a-36/a≤0, а потом a+36/a≥0 становится?

0

умножила обе части на -1

0

Можете, мне, пожалуйста, еще два неравенства помочь решить?