Пусть площадь АВС s = 48;
Площадь треугольника ALC равна S/4, поскольку LC/BC = 1/4, а высоты у ABC и ALC - общие - это расстояние от А до ВС. При этом расстояние от М до ВС составляет 3/4 расстояния от А до ВС (оставляю доказательство этого элементарного утверждения вам, подсказка - надо провести перпендикуляры к ВС из А - АН и из М - МР и рассмотреть подобные треугольники AHC и MРC, причем МС/АС = 3/4), поэтому площадь треугольника MLC равна (S/4)*(3/4) = 3*S/16;
Точно так же площади треугольников АМК и BKL равны 3*S/16;
Поэтому площадь треугольника MLK равна S - 3*(3*S/16) = 7*S/16 = 21;