LНайдем одз
{4x - 1> 0; {x> 0,25;
7x - 3 > 0 x > 3/7 ⇒ x > 3/7
log0,5_(4x-1) + log0,5_(7x-3) = 1;
log0,5_((4x-1)(7x - 3)) = log0,5_0,5;
(4x-1)(7x - 3) = 0,5;
28x^2 - 19x + 3 = 0,5;
28x^2 - 19x + 2,5 = 0;
D = 19^2 - 4*28*2,5= 361 - 280 = 81= 9^2;
x1= (19+9)/56 = 28/56 = 0,5. > 3/7 ∈ одз
x2 = (19-9) / 56 = 10/56 = 5/28. < 3.7 ∉ одз
ОТвет х = 0,5,