Однородный сосновый брус массой M, раз- меры которого указаны ** рисунке 10.11, может...

0 голосов
72 просмотров

Однородный сосновый брус массой M, раз-
меры которого указаны на рисунке 10.11, может
свободно вращаться вокруг горизонтальной оси
OO'. В точку A бруса ударяет горизонтально летя-
щее ядро массой m. Какова начальная скорость яд-
ра v 0 , если брус отклонился на угол φ, а ядро упало
на месте удара?


image

Физика (1.8k баллов) | 72 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Данная задача решается довольно просто, поскольку нам уже дано изменение скорости ядра, которое, по всей видимости (что нужно будет проверить нравенством), теряет энергию.

Итак: начальный импульс ядра: m vo ;

Начальный момент импульса ядра относительно оси ОО': (L–a) m vo ;

Конечный импульс ядра (сразу после удара) по горизонтальной оси равен нулю, а значит, и конечный момент импульса ядра равен нулю. Тогда изменение момента импульса ядра относительно оси ОО' равно его начальному моменту импульса. Всё это изменение момента импульса ядра превратится в момент импульса дощатого бруса. Обозначив угловую скорость и момент инерции дощатого бруса, соответственно, как: ω и J , мы можем записать:

Jω = (L–a) m vo ;         [1]

Кинетическая энергия дощатого бруса равна Jω²/2 и вся она перейдёт в потенциальную энергию, когда он поднимется, повернувшись на угол φ. Нижняя кромка бруса при повороте на угол φ окажется на Lcosφ ниже оси OO'. Таким образом нижняя кромка поднимется от начального уровня на величину L(1–cosφ), а поскольку центр масс точно вдвое ближе к оси OO', чем нижняя кромка, то общее поднятие центра масс бруса при его повороте на угол φ составит L(1–cosφ)/2 , а изменение потенциальной энергии в поле силы тяжести будет равно: MgL(1–cosφ)/2 . Когда вся кинетическая энергия перейдёт в потенциальную, дощатый брус как раз и окажется в своей верхней точке, т.е. в положении максимального отклонения. Итак, учитывя превращение кинетической энергии в потенциальную мы можем записать:

Jω²/2 = MgL(1–cosφ)/2 ;

J²ω² = MgJL(1–cosφ) ;

Учтём, что J = ML²/3, тогда:

J²ω² = M²L³g(1–cosφ)/3 ;

Jω = ML√[Lg(1–cosφ)/3] ;

Приравняем к этому уравнение [1] и получим:

(L–a) m vo = ML√[Lg(1–cosφ)/3] ;

vo = [M/m] L/[L–a] √[Lg(1–cosφ)/3] ;

vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] ;

Проверим ещё, что кинетическая энергия в системе не возрастает, что было бы абсурдом:

vo² = ( M / [m(1–a/L)] )² Lg(1–cosφ)/3 ;

Тогда начальная кинетическая энергия равна:

Eo = mvo²/2 = ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;

А конечная кинетическая энергия, равная потенциальной, должна быть не больше начальной кинетической:

MgL(1–cosφ)/2 < ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;

1 < M/[3m(1–a/L)²] ;

(1–a/L)² < M/[3m] ;

1–a/L < √[M/(3m)] ;





ОТВЕТ

при выполнении условия 1–a/L < √[M/(3m)] – начальная скорость описанного движения ядра должна была бы быть:

vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] .

(7.5k баллов)