решить биквадратное уравнение x^4-6x^2+5=0 Желательно всё расписать
x^4-6x^2+5=0
x^2=t
t^2-6t+5=0
D=36-4*5=16
t1=6+4/2=5
t2=6-4/2=1
X^2=5 x^2=1
x=подкорнем5 x=+-1
ответ:подкорнем5;1;-1
D=(-6)^2-4*1*5=36-20=16
x^2=5 или x^2=1
x1=√5 x4=√1=1
x2=-√5 x4=-√1=-1
Ответ: х1=√5,х2=-√5,х3=1, х4=-1