cos(arctg(-3/4)+arcctg(-1/(корень из 3))=
=cos(-arctg(3/4)+(п-arcctg((корень из 3)/3))=cos(-arctg(3/4)+(п-п/3))=
cos(2п/3-arctg(3/4))=cos(2п/3)cos(arctg(3/4)+sin(2п/3)sin(arctg(3/4))=
=(-1/2)*1/корень из1+tg^2(arctg(3/4)) + (корень из3)/2*tg(arctg(3/4)/корень из1+tg^2(arctg(3/4))= (-1/2)*1/корень из1+9/16 + (корень из3)/2*3/4*/корень из1+9/16=(-1/2)*1/5/4 + (корень из3)/2*3/4*/5/4=-4/10 + 3(корень из3)/10=
= (3(корень из3)-4)/10
Ответ: (3(корень из3)-4)/10.
tg x/2=1- cosx
(1-cosx)/(1+cosx)-(1-cosx)=0| умножим обе части уравнения на (1+cosx)неравно0
1-cosx-(1-cosx)(1+cosx)=0
1-cosx-(1-cos^2x)=0
cos^2x-cosx+1-1=0
cos^2x-cosx=0
cosx(cosx-1)=0
Под одним знаком совокупности: [cosx=0 =>x=п/2+пn, n принадлежит целымчис.
[cosx-1=0 => cosx=1 =>x=п+2пn, n принадлежит целымчис.
Ответ: п/2+пn; п+2пn, n принадлежит челым числам.