t²-26t+25=0
По т.Виета
t₁=25
t₂=1
При t=25
нет решений, так как -1,5∉[-1; 1].
При t=1
k∈Z.
На промежутке [-π; 3π/2]:
a) x= - π/3 + 2πk, k∈Z
-π≤ -π/3 + 2πk ≤ 3π/2
-π + π/3 ≤ 2πk ≤ 3π/2 + π/3
- 2π/3 ≤ 2πk ≤ 11π/6
(- 2π/3) * (1/(2π)) ≤ k ≤ (11π/6) * (1/(2π))
-1/3 ≤ k ≤ 11/12
k=0
При k=0 x= - π/3
б) x= π/3 + 2πk, k∈Z
-π ≤ π/3 +2πk ≤ 3π/2
-π - π/3 ≤ 2πk ≤ 3π/2 - π/3
-4π/3 ≤ 2πk ≤ 7π/6
(-4π/3) * (1/(2π)) ≤ k ≤ (7π/6) * (1/(2π))
-2/3 ≤ k ≤ 7/12
k=0
При k=0 x=π/3
Ответ: а) (+/-) π/3 + 2πk, k∈Z;
б) - π/3; π/3.