Если бы за столом сидели только лжецы, то никто из них не мог бы сказать, что лжецов за столом больше. Значит, за столом есть хотя бы один рыцарь. Заметим, что все рыцари должны были ответить одинаково, а лжецы так же отвечать не могли. Те пятеро, кто сказали, что за столом больше рыцарей, не могут быть рыцарями, так как в этом случае рыцарей было бы поровну, и они бы солгали. Также те двое, кто сказали, что рыцарей и лжецов за столом поровну,не могут быть рыцарями,так как в этом случае рыцарей было бы двое, а не половина. Значит, рыцари—это трое сказавших, что за столом больше лжецов. Итак, есть за столом сидят 3 рыцаря (и 7 лжецов), и они могут сказать набор фраз, приведенный в условии.