Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC...

0 голосов
39 просмотров

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника AKM к площади KPCM


Геометрия (49 баллов) | 39 просмотров
Дан 1 ответ
0 голосов

Через вершину В проведем прямую параллельную АС. АР продолжаем до пересечения с этой прямой в точке Е. Итак, ВЕ параллельна АС. Треугольники ЕВК и АКМ подобны по равенству углов, следовательно ЕВ/АМ = ВК/КМ. Т.к ВК=КМ и ЕВ =АМ, следовательно треуг. ЕВК=треуг. АКМ, следовательно ВР/СР=ЕВ/АС=1/2. Итак, СР=ВС *2/3. Sacp=sabc*2/3. Т.к Sbam =1/2ABC, a Sakm= 1/2ABM, следовательно Sakm =S/4. Таким образом Skpcm = Sacp -Sakm = S*(2/3 - 1/4) = S* 5/12 . Ответ : 12/5

(52 баллов)