Как решать уравнение третьей степени (кубическое уравнение) вида

0 голосов
54 просмотров

Как решать уравнение третьей степени (кубическое уравнение) вида

ax^3+bx^2+cx+d=0


Алгебра (5.9k баллов) | 54 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Варианты решения таковы:
1)Сначала подбираем такое х,чтобы d:x=n(где n-целое число)
Проще говоря,ищем делители числа d,
И перебираем эти х1,чтобы соблюдалось наше куб.ур-ие.
Потом делим куб.ур-ие на выражение (х-х1),получаем квадратное уравнение,ну далее по стандарту,решаем квадратное уравнение.
Пример:
x^3-2x^2-9x+18\\x=1;1-2-9+18\ne0\\x=-1;-1-2+9+18\ne0\\x=2;8-8-18+18=0\\x_1=2\\x^3-2x^2-9x+18:(x-2)=x^2-9\\x^2-9=0\\x=^+_-3\\x_1=2;x_2=-3;x_3=3
Еще вариант группировка:
x^3-2x^2-9x+18=x^2(x-2)-9(x-2)=(x^2-9)(x-2)=0\\x=^+_-3;x=2
Ну еще вариант,если кубическое неполное(т.е нет к примеру или х2 или х)
можно через графики:
x^3-2x^2-9x+18=0\\x^3=2x^2+9x-18
Строим графики левой и правой частей,находим точки пересечения,проводим перпендикуляры к оси ОХ.

(73.4k баллов)
0 голосов

Сначала подбирать корни, являющиеся делителями свободного члена и пытаться разложить на множители, потом, если это не получилось приводить к каноническому виду
y^3+py+q=0, делая замену:
х=y-b/3a и дальше решать по методу Кардано. Это метод сложный, очень легко ошибиться. Лучше какой-то онлайн решатель по методу Кардано найти и по нему решать или хотя бы проверять.

(12.1k баллов)