Диагональ прямоугольника равна 16 см,угол между дивгоналями равна 60 градусам ,вычислите...

0 голосов
39 просмотров

Диагональ прямоугольника равна 16 см,угол между дивгоналями равна 60 градусам ,вычислите большую сторону если извесино что периметр 42


Алгебра (15 баллов) | 39 просмотров
0

Добрый день! Прямоугольник полностью определяется своей диагональю и углом между диагоналями, поэтому условие "периметр равен 42" является избыточным. Более того, оно ещё и сбивает с толку, т.к. данный прямоугольник имеет ДРУГОЙ периметр, не являющийся целым числом. Пожалуйста, скорректируйте условие задачи. Сейчас единственным правильным ответом будет "такого прямоугольника не существует".

Дан 1 ответ
0 голосов
Правильный ответ

Дан прямоугольник АВСД. Диагонали АС=ВД=16 см , ∠СОД=60°.
В точке пересечения диагоналей , точке О, они делятся пополам.
Значит, АО=ОС=ВО=ОД=8 см. 
ОС=ОД  ⇒  ΔСОД - равнобедренный с углом при вершине в 60°.
Значит это равносторонний треугольник. То есть сторона СД=8 см.
СД=АВ=8 см.
∠АОД=180°-∠СОД=180°-60°=120° .
АО=ОД=8 см  ⇒  ΔАОД -  равнобедренный.
Опустим перпендикуляр из вершины О на сторону АД:  АН⊥АД .
АН является и медианой в равнобедренном Δ  ⇒  АН=НД .
ΔНОД:  ∠ОНД=90° , ∠НОД=120°:2=60° , ∠ОДН=90°-60°=30°.
Против угла в 30° лежит катет, равный половине гипотенузы,
поэтому ОН=8:2=4 (см).
НД²=ОД²-ОН²=8²-4²=64-16=48 ,   НД=√48=√(16·3)=4√3 (см)
  * Можно было так:  НД=ОД·sin60°=8·√3/2=4√3  *
АД=2·НД=2·4√3=8√3 (см) - б'ольшая сторона
 
Замечание:  Периметр Р=2(АД+СД)=2(8√3+8)=16(√3+1) , но никак периметр не равен 48 !!!

(831k баллов)